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Transverse rumble strips (TRS) have been used as a common approach by road planners to enhance road traffic safety. It functions to reduce vehicle speed and increase the drivers’ alertness by generating vibration and sound effects to the vehicles. However, while TRS vibration is necessary to alert drivers, it may also become an issue when it is inappropriately designed as it generates excessive vibration that could affect road users’ comfort. This paper aimed to evaluate how TRS thickness and vehicle speed influence the vibration level and subsequently come up with an appropriate design of the thickness that could generate noticeable vibration to drivers but not too much in which can affect their comfort. In-cabin vibration measurement in the acceleration root-mean-square value, RMS (m/s2) was recorded while a test car was moving on the TRS samples with various thickness measurements on an actual road. The findings from a previous study on estimating the drivers’ vibration difference threshold by using Weber’s Law were used to estimate the appropriate TRS vibration and then the TRS thickness. The results indicated that vehicle speed and TRS thickness are highly significant to determine the TRS vibration. The recommendation for TRS thickness design for different average speed was proposed at the end of this paper.   
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1.	Introduction 

*Transverse rumble strips (TRS) (Fig. 1) are effective to reduce vehicle speed and accidents (Finley et al., 2005; Liu et al., 2011). It has been widely used in Malaysia and many other countries. Furthermore, thermoplastic material that TRS are always made from is relatively cost-effective and easy to install (Thomas and Schloz, 2001). TRS function is to reduce the vehicle speed and increase driver’s alertness by generating vibration and sound to the vehicles. However, it is quite common that TRS vibration that aims to enhance driver’s alertness also generate excessive vibration to the extent where it affects the drivers and passengers comfort. Moreover, frequent commute on the road with excessive TRS vibration would damage the vehicles (Bahar, 2007).  The TRS specifications in Malaysia are based on Malaysian Ministry of Work (MOW) guidelines as illustrated in Fig. 2 (MOW, 2002) and it is 
                                                 * Corresponding Author.  Email Address: mohdhanifi@ymail.com  

recommended by MOW (2002) that the thickness of TRS should range between 3 and 7mm. Some of TRS thickness on the road is measured more than 7 mm. This indicated that some road planners ignore the recommendation assigned by MOW (2002) and come up with their own design. Meyer (2006) and Lank and Steinauer (2011) support the common knowledge of TRS where the TRS thickness and vehicle speed deeply influence the level of TRS vibration. In regard to speed, Meyer (2006) stated that increasing the speed does not necessarily generate higher vibration. In some cases, the vibration decreases as speed increases but the data obtained was not consistent enough for Meyer (2006) to provide conclusive results. Yet, this situation does raise questions about the effectiveness of TRS for the purpose of speed reduction. Nevertheless, both studies did not put forward any model that could explain the TRS thickness and vehicle speed as predictor variables in estimating TRS vibration. Moreover, there is still a gap in the knowledge of how much thickness could generate vibration to road users.   
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By using the principle of Weber’s Law, Mansfield (2000) suggested that a person who sits in a car will experience the noticeable vibration differences when the initial vibration is added 13% of its value.	RMS = 1.13 × RMS୵୭    (3)By using equation (2) to design the TRS thickness, road planners are required to insert the average traffic speed, v which can be obtained by measuring the average speed at the location. Substitute RMSw with RMSN into equation 2:- RMS = −0.63 + 0.181h + 0.027v RMS + 0.63 − 0.027v = 0.181h h = RMS + 0.63 − 0.027v 0.181ൗ  h = 5.525RMS − 0.149v + 3.481 (4) 
Where h  = recommended TRS thickness RMSN  = noticeable difference threshold vibration; obtained from Weber’s Law v  = average traffic speed Work Example:-  To design the appropriate TRS thickness at locations that has average vehicle speed of 50 km/h.  The appropriate thickness would be able to generate a noticeable vibration to road users in a 

typical car but not too much to the extent that it can annoy them.   From Table 2, the value of RMSwo when v=50 km/h is 1.18 m/s2. To get the appropriate/noticeable vibration value, RMSN; RMSwo should be added 13%.  By using equation (3):-    RMS = 1.13 × RMS୵୭ = 1.18 × 1.13 = 1.33 m/sଶ (5) With v=50 km/h and RMSN=1.33 m/s2, to get the recommended TRS thickness, h; equation (4) should be applied. h = 5.525RMS − 0.149v + 3.481 h = 5.525(1.33) – 0.149(50)  +  3.481 = 3.3 ≈ 3 mm          (6) Therefore, the recommended TRS thickness for the location is 3 mm.   Table 4 shows the RMSN by adding 13% to RMSwo. Then, the value of thickness, h was obtained by inserting the RMSN and v value. It can be seen that the highest thickness recommended was 7 mm for 30km/h and the lowest was 2 mm at 70km/h. 
	

Table	4: RMSwo added with 13% of its value and recommended TRS thickness for respected speed Speed, v (km/h) RMSwo (m/s2) *RMSN (m/s2) **h from calculation (mm) #Recommended h (mm)30 1.28 1.45 7.0 7 50 1.18 1.33 3.3 3 70 1.35 1.57 1.7 2 90 2.51 2.84 5.8 6 Note: *RMSN = RMSwo+13% = noticeable difference threshold vibration **h= thickness #recommended h are the rounded h from calculation value 
	

4.	Discussions	The TRS design guidelines in Malaysia are generally too basic and road planners usually come up with their own design. This has led to a various dimension of TRS thickness that eventually brings the issue of excessive vibration to road users. TRS vibration is essentially necessary to alert the drivers but it need to be controlled so it would not generate excessive vibration. From the analysis, TRS vibration possessed a linear positive relationship with the TRS thickness which was consistent with the findings by Meyer (2006) and Lank and Steinauer (2011). Increasing the TRS thickness will increase the in-cabin vibration when the vehicle crosses over the TRS. However, to control the TRS vibration by just manipulating the TRS thickness is not possible since the vibration also heavily relies on the vehicle speed.  Meyer (2006) stated that increasing speed does not necessarily generate higher vibration. In some cases, the vibration decreases as the speed increases but the data obtained was not consistent enough for Meyer (2006) to provide conclusive results. In contrast, this study found that TRS vibration was linearly proportional to speed. Yet, the relative vibration possessed inconsistent pattern as it peaked at 70 km/h speed and then diminished at 90 km/h 

speed because the baseline vibration from 70 km/h speed to 90 km/h steeply rose. This might give the impression to the driver that vibration is less at 90 km/h, hence it may become counterproductive to lower the vehicle speed.  This paper also presented the in-cabin vibration model when a typical car passes through the TRS samples. The model estimated the vibration by taking into account the TRS thickness and vehicle speed. Therefore, by having these two parameters, the vibration level that will be experienced by road users can be estimated. The model was then used to estimate TRS thickness. Hence, road planners can decide which thickness is suitable for particular location. 
5.	Conclusion	Road planners have used a variety of TRS thickness based on their judgement in TRS installation since the TRS guidelines provide them freedom to select TRS thickness in within the range 3-7mm. Poor selection of TRS thickness will cause inappropriate vibration level to the vehicles. From the analysis, it is concluded that TRS vibration is deeply influenced by TRS thickness and vehicle speed. Both parameters possessed a linear relationship with the TRS vibration. Relative 
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vibration was peaked at medium speed and diminished at higher speed. This paper has presented a model to estimate TRS vibration level based on the information of TRS thickness and vehicle speed. Then, this paper used Weber’s Law to determine the appropriate TRS vibration. The in-cabin vibration model and the information of appropriate TRS vibration together with the vehicle speed were then used to design TRS thickness. These findings hopefully would assist road planners in designing better TRS in future.  
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